Brakeman and Jenkins:
The Duo Detects Defects in
Ruby on Rails Code

Justin Collins
Tin Zaw

AppSec USA
September 23, 2011

About Us

Justin Collins - @presidentbeef

Tin Zaw - @tzaw

Our Philosophy:
Light Touch

Use tools to detect and report
security defects in code
early in the development cycle
with minimal impact

to development workflow

McGraw’s Touch Point
Code Review (Tools

6] o o (3}
JRITY CODE
Hiét{t:{hﬂiu1 4 E:;_:.-RE\-.:[REVIEW PEMETRATION
o i o : 4] (TooLs) TESTING (7]
RIsSK-BASED (2]
ABUSE Risk SECURITY RISk SECURITY
CALES AMALYEIS TESTS ANALTSIS OPERATIONS
REQUIREMENTS | | ARCHITECTURE TEST PLAMY CoD TESTS AND FEEDRACK FROM
AND USE CASES AND DESICH TEST RESULTE THE FIELD
|1

Cost

Defect Cost Curve

Requirements defect

' : found via traditional
Programming defect found via :
acceptance testing

Pair Programming .

Programming defect found via Design defect \
Continuous Integration found via traditional »
l system testing

Design or programming defect found \
via Test Driven Development (TDD) \

—_
—

I
| / Requirements or design defect found via

| | Active Stakeholder Participation
I Progamming defect

found via traditional

| Requirements or design defect —~ system testing

| found via Model Storming

Defect found via a
__________ review or inspection

z T T s Defect found via independent
Yy parallel testing

Length of Feedback Cycle Copyright 2006-2009 Scott W. Ambler

Cost

Defect Cost Curve mrrr

Requirements defect

' ' found via traditional
Programming defect found via :
acceptance testing

Pair Programming .

Programming defect found via Design defect \
Continuous Integration found via traditional
l system testing

| Design or programming defect found \
| via Test Driven Development (TDD) \

—_
—

I
| / Requirements or design defect found via

Active Stakeholder Participation
Progamming defect

found via traditional

/ Requirements or design defect —~~ system testing

| found via Model Storming

Defect found via a
__________ review or inspection

2 T T Defect found via independent
Yy parallel testing

Length of Feedback Cycle Copyright 2006-2009 Scott W. Ambler

Defect Cost Curve

Requirements defect

' ' found via traditional
Programming defect found via :
acceptance testing

Pair Programming e

Programming defect found via Design defect \
Continuous Integration found via traditional
I system testing

| \
Design or programming defect found \

via Test Driven Development (TDD) \
/

Cost

L e

Requirements or design defect found via

I
|
I
I
I
| | Active Stakeholder Participation
| Progamming defect
|
I
|
I

found via traditional

| Requirements or design defect —~ system testing

|
I
I
I
|
|
I
I
I
|
I
I
I
I
: | found via Model Storming

Brakeman
+

Defect found via a
__________ review or inspection

Jenkins |
Defect found via independent

parallel testing

-—
— —
— —

Length of Feedback Cycle Copyright 2006-2009 Scott W. Ambler

Static vs. Dynamic Analysis

* Penetration Testing Pros
— Replicates real life deployment
— Entire application stack, configuration

* Penetration Testing Cons
— Reports symptoms, not root causes
— Setup time, find defects late during QA cycle
— Incomplete view of running app

Static vs. Dynamic Analysis

e Static Code Analysis Pros
— Early detection of defects
— Integrated into developer’s workflow
— No deployment required

e Static Code Analysis Cons
— Limited to code
— Need access to source code

Existing Static Analysis
Tools for Security Defects

C/C++ <many>
C#/.Net <many>
Java <many>
Ruby ?
Ruby on Rails Poakeman

Manual Workflow

Get Latest

Examine
Results
T

Code

ST s
=~/ ’ < .
17 |
ol =\ v
/ o, ey
— } 5 T
g r D =
y) -~
= SN
e il
N i i I
111 L

Manual Workflow

Get Latest Run Tool Examine
Code Results

Automated Worlw

N

Brakeman

http://brakemanscanner.org

http://brakemanscanner.org/

Ruby on Rails

http://rubyonrails.org/

Web application framework using the Ruby language

Built on the model-view-controller design pattern

“Convention over configuration” - encourages
assumptions which lead to default behavior

http://rubyonrails.org/

Brakeman Application Flow

Inspect Generate
Results Report

v v

Clean up &
Organize

Vulnerabilities Brakeman Detects

Cross site scripting
SQL injection
Command injection
Unprotected redirects
Unsafe file access
Default routes
Insufficient model validation
Version-specific security issues
Unrestricted mass assighment
Dangerous use of eval()
...and morel!

Example: Cross Site Scripting
(Rails 2.x)

Results for <%= params][:query] %>

Example: Cross Site Scripting
(Rails 3.x)

Results for <%= raw params[:query] %>

Example: Cross Site Scripting
(Rails 3.x)

Results for <%= raw params[:query] %>

Unescaped parameter value near line 1.:
params|:query]

Example: SQL Injection

username = params|[:user][:name]

User.find(:all,
cconditions => "name like '%#{username}%'")

Example: SQL Injection

username = params|:user][:name]

User.find(:all,
cconditions => "name like '%#{username}%'")

Possible SQL injection near line 87:

User.find(:all, :conditions => ("name like
'‘Y%#{params|:user][:name]}%"")

Extended Example - Filters

class ApplicationController < ActionController::Base

def set user
@user = User.find(params[:user id])

end

end

Method in application controller sets

the @user variable

Extended Example - Filters

class UserController < ApplicationController
before filter :set user

def show
end

end

User controller calls set_user before

any action

Extended Example - Filters

<%= raw @user.bio %>

View outputs the result of a method

call on the @user variable

Extended Example - Filters

UserController ummd ApplicationController juummd UsecrController
" v/ \ v/ " l v/

user/show.erb.html
. V)

Data flow followed from filter through

to the view

Extended Example - Filters

<%= raw @user.bio %>

Unescaped model attribute near line 5:

User.find(params[:id]).bio

Example: Mass Assignment

class User < ActiveRecord: :Base
end

User model generated by Rails

Example: Mass Assignment

class UsersController < ApplicationController
#...
def new
@user = User.new(params[:user])
#...
end
end

Excerpt of Users controller

generated by Rails

Example: Mass Assignment

class UsersController < ApplicationController
#...
def new
@user = User.new(params[:user])
#...
end

Unprotected mass assighment near line 43:

end User.new(params[:user])

0

e J enkins

Open source continuous integration server

http://jenkins-ci.org

How Jenkins Works

Monitor Aggregate

How Jenkins Works

Aggregate
REEIE

T

Monitor

N "1\1

b

Security
Warnings

brakeman

git push
svn commit

Brakeman Plugin for Jenkins

Run Collect
Brakeman Warnings

Generate
Reports
™

V V
-

=

Q

[<
k /’. : AN »
& - L :_J' u’ —/ —/
i :"’r il
13 " v

Some Results

Warnings Trend

All Warnings

181

Summary

Total High Priority
181 44
Details

Files Categories

Type

Cross Site Reqguest Forgery

Cross Site Scripting
Default Routes

Dwvnamic Render Path

Format Validation
Redirect
Total

Types | Warnings

New Warnings
0

Normal Priority
7

Details High Mormal

Total Distribution
1
156
2
10
B

6

181

Fixed Warnings
0

Low Priority
130

Low

Using Brakeman

gem install brakeman
cd your/rails/app
brakeman

Resources

Ruby

— http://ruby-lang.org

Ruby on Rails

— http://rubyonrails.org

Ruby on Rails Security Guide

— http://guides.rubyonrails.org/security.html
Brakeman

— http://brakemanscanner.org

Jenkins

— http://jenkins-ci.org

Brakeman plugin for Jenkins

— http://github.com/presidentbeef/brakeman-jenkins-plugin

