
Brakeman and Jenkins:
The Duo Detects Defects in

Ruby on Rails Code

Justin Collins

Tin Zaw

AppSec USA

September 23, 2011

About Us

Justin Collins - @presidentbeef

Tin Zaw - @tzaw

Use tools to detect and report

security defects in code

early in the development cycle

with minimal impact

to development workflow

Our Philosophy:

Light Touch

McGraw’s Touch Point #1

Code Review (Tools)

Defect Cost Curve

Defect Cost Curve Application

Security Testing

Defect Cost Curve

Brakeman

+

Jenkins

Static vs. Dynamic Analysis

• Penetration Testing Pros

– Replicates real life deployment

– Entire application stack, configuration

• Penetration Testing Cons

– Reports symptoms, not root causes

– Setup time, find defects late during QA cycle

– Incomplete view of running app

Static vs. Dynamic Analysis

• Static Code Analysis Pros

– Early detection of defects

– Integrated into developer’s workflow

– No deployment required

• Static Code Analysis Cons

– Limited to code

– Need access to source code

Existing Static Analysis

Tools for Security Defects

C/C++ <many>

C#/.Net <many>

Java <many>

Ruby ?

Ruby on Rails

Manual Workflow

Get Latest

Code
Run Tool

Examine

Results

Manual Workflow

Get Latest

Code
Run Tool

Examine

Results

Repeat

Automated Workflow

Let tools alert you when

there is a problem

Brakeman

http://brakemanscanner.org

http://brakemanscanner.org/

Ruby on Rails

Web application framework using the Ruby language

Built on the model-view-controller design pattern

“Convention over configuration” – encourages

assumptions which lead to default behavior

http://rubyonrails.org/

http://rubyonrails.org/

Brakeman Application Flow

Parse App

Code

Clean up &

Organize

Inspect

Results

Generate

Report

Vulnerabilities Brakeman Detects
Cross site scripting

SQL injection

Command injection

Unprotected redirects

Unsafe file access

Default routes

Insufficient model validation

Version-specific security issues

Unrestricted mass assignment

Dangerous use of eval()

…and more!

Example: Cross Site Scripting

(Rails 2.x)

Results for <%= params[:query] %>

Example: Cross Site Scripting

(Rails 3.x)

Results for <%= raw params[:query] %>

Example: Cross Site Scripting

(Rails 3.x)

Results for <%= raw params[:query] %>

Unescaped parameter value near line 1:

params[:query]

Example: SQL Injection

username = params[:user][:name]

User.find(:all,
 :conditions => "name like '%#{username}%'")

Example: SQL Injection

username = params[:user][:name]

User.find(:all,
 :conditions => "name like '%#{username}%'")

Possible SQL injection near line 87:

User.find(:all, :conditions => ("name like

'%#{params[:user][:name]}%'")

Extended Example - Filters

class ApplicationController < ActionController::Base

 def set_user
 @user = User.find(params[:user_id])
 end

end

Method in application controller sets

the @user variable

Extended Example - Filters

class UserController < ApplicationController
 before_filter :set_user

 def show
 end

end

User controller calls set_user before

any action

Extended Example - Filters

<%= raw @user.bio %>

View outputs the result of a method

call on the @user variable

Extended Example - Filters

UserController ApplicationController UserController

user/show.erb.html

Data flow followed from filter through

to the view

Extended Example - Filters

<%= raw @user.bio %>

Unescaped model attribute near line 5:

User.find(params[:id]).bio

Example: Mass Assignment

class User < ActiveRecord::Base

end

User model generated by Rails

Example: Mass Assignment

Excerpt of Users controller

generated by Rails

class UsersController < ApplicationController
 #...

 def new

 @user = User.new(params[:user])

 #...

 end

end

Example: Mass Assignment

class UsersController < ApplicationController
 #...

 def new

 @user = User.new(params[:user])

 #...

 end

end
Unprotected mass assignment near line 43:

User.new(params[:user])

Open source continuous integration server

http://jenkins-ci.org

How Jenkins Works

Monitor

Conditions
Run Jobs

Aggregate

Results

How Jenkins Works

Monitor

Conditions
Run Jobs

git push
svn commit

brakeman
Security
Warnings

Aggregate

Results

Brakeman Plugin for Jenkins

Run

Brakeman

Collect

Warnings

Generate

Reports

Some Results

Using Brakeman

gem install brakeman

cd your/rails/app

brakeman

Resources
• Ruby

– http://ruby-lang.org

• Ruby on Rails

– http://rubyonrails.org

• Ruby on Rails Security Guide

– http://guides.rubyonrails.org/security.html

• Brakeman

– http://brakemanscanner.org

• Jenkins

– http://jenkins-ci.org

• Brakeman plugin for Jenkins

– http://github.com/presidentbeef/brakeman-jenkins-plugin

